C语言画圣诞树的方法

来源:爱站网时间:2019-12-01编辑:网友分享
还有一个月就是圣诞节了,圣诞将至很多小伙伴们都会利用各种方法来庆祝,那么你知道如何用C语言化圣诞树吗?下面我们就跟爱站小编一起去看看C语言画圣诞树的方法。

还有一个月就是圣诞节了,圣诞将至很多小伙伴们都会利用各种方法来庆祝,那么你知道如何用C语言化圣诞树吗?下面我们就跟爱站小编一起去看看C语言画圣诞树的方法。

我使用了左右镜像的Sierpinski triangle,每层减去上方一小块,再用符号点缀。可生成不同层数的「圣诞树」,如下图是5层的结果

#include <stdlib.h>

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 4;
  for (int j = 1; j <= n; j++) {
    int s = 1 << j, k = (1 << n) - s, x;
    for (int y = s - j; y >= 0; y--, putchar('\n')) {
      for (x = 0; x < y + k; x++) printf(" ");
      for (x = 0; x + y < s; x++) printf("%c ", '!' ^ y & x);
      for (x = 1; x + y < s; x++) printf("%c ", '!' ^ y & (s - y - x - 1));
    }
  }
}

基本代码来自Sierpinski triangle的实现,字符的想法来自于code golf - Draw A Sierpinski Triangle。

更新1: 上面的是我尝试尽量用最少代码来画一个抽象一点的圣诞树,因此树干都没有。然后,我尝试用更真实一点的风格。因为树是一个比较自相似的形状,这次使用递归方式描述树干和分支。

n = 0的时候,就是只画一主树干,树干越高就越幼:<img

n = 1的时候,利用递归画向两面分支,旋转,越高的部分缩得越小。<img

n = 2 的时候,继续分支出更细的树支。n = 2 的时候,继续分支出更细的树支。<img

n = 3就差不多够细节了。n = 3就差不多够细节了。

代码长一点,为了容易理解我不「压缩」它了。

 

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define PI 3.14159265359

float sx, sy;

float sdCircle(float px, float py, float r) {
  float dx = px - sx, dy = py - sy;
  return sqrtf(dx * dx + dy * dy) - r;
}

float opUnion(float d1, float d2) {
  return d1 < d2 ? d1 : d2;
}

#define T px + scale * r * cosf(theta), py + scale * r * sin(theta)

float f(float px, float py, float theta, float scale, int n) {
  float d = 0.0f;
  for (float r = 0.0f; r < 0.8f; r += 0.02f)
    d = opUnion(d, sdCircle(T, 0.05f * scale * (0.95f - r)));

  if (n > 0)
    for (int t = -1; t <= 1; t += 2) {
      float tt = theta + t * 1.8f;
      float ss = scale * 0.9f;
      for (float r = 0.2f; r < 0.8f; r += 0.1f) {
        d = opUnion(d, f(T, tt, ss * 0.5f, n - 1));
        ss *= 0.8f;
      }
    }

  return d;
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  for (sy = 0.8f; sy > 0.0f; sy -= 0.02f, putchar('\n'))
    for (sx = -0.35f; sx < 0.35f; sx += 0.01f)
      putchar(f(0, 0, PI * 0.5f, 1.0f, n) < 0 ? '*' : ' ');
}

这段代码实际上是用了圆形的距离场来建模,并且没有优化。这是一棵「祼树」,未能称得上是「圣诞树」。

更新2: 简单地加入装饰及丝带,在命令行可以选择放大倍率,下图是两倍大的。

<img src="https://pic2.zhimg.com/fa09e223f37b214d5bca14953366150d_b.jpg" data-rawwidth="711" data-rawheight="823" class="origin_image zh-lightbox-thumb" width="711" data-original="https://pic2.zhimg.com/fa09e223f37b214d5bca14953366150d_r.jpg">// f() 及之前的部分沿上

int ribbon() {
  float x = (fmodf(sy, 0.1f) / 0.1f - 0.5f) * 0.5f;
  return sx >= x - 0.05f && sx <= x + 0.05f;
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  float zoom = argc > 2 ? atof(argv[2]) : 1.0f;
  for (sy = 0.8f; sy > 0.0f; sy -= 0.02f / zoom, putchar('\n'))
    for (sx = -0.35f; sx < 0.35f; sx += 0.01f / zoom) {
      if (f(0, 0, PI * 0.5f, 1.0f, n) < 0.0f) {
        if (sy < 0.1f)
          putchar('.');
        else {
          if (ribbon())
            putchar('=');
          else
            putchar("............................#j&o"[rand() % 32]);
        }
      }
      else
        putchar(' ');
    }
}

2D的我想已差不多了。接下来看看有没有空尝试3D的。

更新3:终于要3D了。之前每个节点是往左和右分支,在三维中我们可以更自由一点,我尝试在每个节点申出6个分支。最后用了简单的Lambertian着色(即max(dot(N, L), 0)。

n = 1 的时候比较容易看出立体的着色:

可是n=3的时候已乱得难以辨认:

估计是因为aliasing而做成的。由于光照已经使用了finite difference来计算法线,性能已经很差,我就不再尝试做Supersampling去解决aliasing的问题了。另外也许Ambient occlusion对这问题也有帮助,不过需要更多的采样。

因为需要三维旋转,不能像二维简单使用一个角度来代表旋转,所以这段代码加入了不少矩阵运算。当然用四元数也是可以的

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define PI 3.14159265359f

float sx, sy;

typedef float Mat[4][4];
typedef float Vec[4];

void scale(Mat* m, float s) {
  Mat temp = { {s,0,0,0}, {0,s,0,0 }, { 0,0,s,0 }, { 0,0,0,1 } };
  memcpy(m, &temp, sizeof(Mat));
}

void rotateY(Mat* m, float t) {
  float c = cosf(t), s = sinf(t);
  Mat temp = { {c,0,s,0}, {0,1,0,0}, {-s,0,c,0}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void rotateZ(Mat* m, float t) {
  float c = cosf(t), s = sinf(t);
  Mat temp = { {c,-s,0,0}, {s,c,0,0}, {0,0,1,0}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void translate(Mat* m, float x, float y, float z) {
  Mat temp = { {1,0,0,x}, {0,1,0,y}, {0,0,1,z}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void mul(Mat* m, Mat a, Mat b) {
  Mat temp;
  for (int j = 0; j < 4; j++)
    for (int i = 0; i < 4; i++) {
      temp[j][i] = 0.0f;
      for (int k = 0; k < 4; k++)
        temp[j][i] += a[j][k] * b[k][i];
    }
  memcpy(m, &temp, sizeof(Mat));  
}

void transformPosition(Vec* r, Mat m, Vec v) {
  Vec temp = { 0, 0, 0, 0 };
  for (int j = 0; j < 4; j++)
    for (int i = 0; i < 4; i++)
      temp[j] += m[j][i] * v[i];
  memcpy(r, &temp, sizeof(Vec));  
}

float transformLength(Mat m, float r) {
  return sqrtf(m[0][0] * m[0][0] + m[0][1] * m[0][1] + m[0][2] * m[0][2]) * r;
}

float sphere(Vec c, float r) {
  float dx = c[0] - sx, dy = c[1] - sy;
  float a = dx * dx + dy * dy;
  return a < r * r ? sqrtf(r * r - a) + c[2] : -1.0f;
}

float opUnion(float z1, float z2) {
  return z1 > z2 ? z1 : z2;
}

float f(Mat m, int n) {
  float z = -1.0f;
  for (float r = 0.0f; r < 0.8f; r += 0.02f) {
    Vec v = { 0.0f, r, 0.0f, 1.0f };
    transformPosition(&v, m, v);
    z = opUnion(z, sphere(v, transformLength(m, 0.05f * (0.95f - r))));
  }

  if (n > 0) {
    Mat ry, rz, s, t, m2, m3;
    rotateZ(&rz, 1.8f);

    for (int p = 0; p < 6; p++) {
      rotateY(&ry, p * (2 * PI / 6));
      mul(&m2, ry, rz);
      float ss = 0.45f;
      for (float r = 0.2f; r < 0.8f; r += 0.1f) {
        scale(&s, ss);
        translate(&t, 0.0f, r, 0.0f);
        mul(&m3, s, m2);
        mul(&m3, t, m3);
        mul(&m3, m, m3);
        z = opUnion(z, f(m3, n - 1));
        ss *= 0.8f;
      }
    }
  }

  return z;
}

float f0(float x, float y, int n) {
  sx = x;
  sy = y;
  Mat m;
  scale(&m, 1.0f);
  return f(m, n);
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  float zoom = argc > 2 ? atof(argv[2]) : 1.0f;
  for (float y = 0.8f; y > -0.0f; y -= 0.02f / zoom, putchar('\n'))
    for (float x = -0.35f; x < 0.35f; x += 0.01f / zoom) {
      float z = f0(x, y, n);
      if (z > -1.0f) {
        float nz = 0.001f;
        float nx = f0(x + nz, y, n) - z;
        float ny = f0(x, y + nz, n) - z;
        float nd = sqrtf(nx * nx + ny * ny + nz * nz);
        float d = (nx - ny + nz) / sqrtf(3) / nd;
        d = d > 0.0f ? d : 0.0f;
        // d = d < 1.0f ? d : 1.0f;
        putchar(".-:=+*#%@@"[(int)(d * 9.0f)]);
      }
      else
        putchar(' ');
    }
}

更新4:发现之前的TransformLength()写错了,上面已更正。另外,考虑提升性能时,一般是需要一些空间剖分的方式去加速检查,但这里刚好是一个树状的场景结构,可以简单使用Bounding volume hierarchy,我使用了球体作为包围体积。只需加几句代码,便可以大大缩减运行时间。

另外,考虑到太小的叶片是很难采样得到好看的结果,我尝试以一个较大的球体去表现叶片(就如素描时考虑更整体的光暗而不是每片叶片的光暗),我觉得结果有进步。

float f(Mat m, int n) {
  // Culling
  {
    Vec v = { 0.0f, 0.5f, 0.0f, 1.0f };
    transformPosition(&v, m, v);    
    if (sphere(v, transformLength(m, 0.55f)) == -1.0f)
      return -1.0f;
  }

  float z = -1.0f;

  if (n == 0) { // Leaf
    Vec v = { 0.0f, 0.5f, 0.0f, 1.0f };
    transformPosition(&v, m, v);    
    z = sphere(v, transformLength(m, 0.3f));
  } 
  else { // Branch
    for (float r = 0.0f; r < 0.8f; r += 0.02f) {
      Vec v = { 0.0f, r, 0.0f, 1.0f };
      transformPosition(&v, m, v);
      z = opUnion(z, sphere(v, transformLength(m, 0.05f * (0.95f - r))));
    }
  }

  // ...
}

上文关于C语言画圣诞树的方法你学会了吗?当然我们除了可以画整体之后还可以画局部,看看是否能再更新。

上一篇:C语言如何实现程序开机自启动

下一篇:c++如何实现线程池

您可能感兴趣的文章

相关阅读

热门软件源码

最新软件源码下载